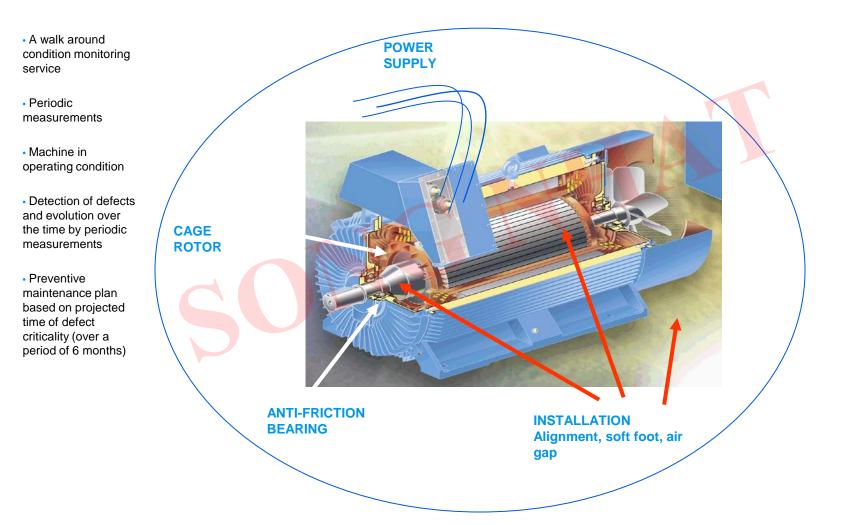


Tran Anh Xuan – Account Manager Machine & Motors – DMMG

ABB MACHsense-P Motor & Generator Service

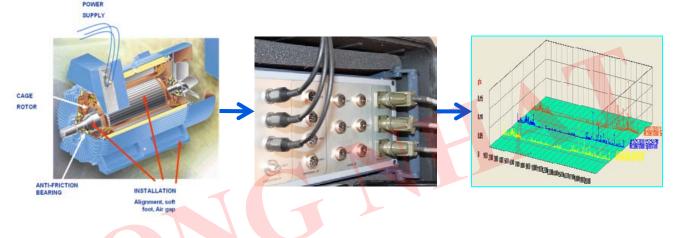


Project: Sixth Sense Overview

Project: ABB MACHsense-P Overview

ABB MACHsense-P

ABB MACHsense-P


- Development has been done by ABB Machines Service based on intensive R&D carried out in our corporate research centers
 - Measurement is done on the operating machine

Measurements & Analysis of Data & Report

- Measurements are performed by ABB Local Service Centers
- A summary report is delivered automatically on-site
- Detailed report is later delivered by Regional Technical Center (RTC)

ABB MACHsense-P Measurements

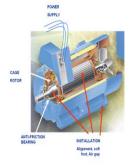
Equipment

 A single analyzer for the mechanical and electrical measurements

Measurements

- 4 Vibration Sensors
- 3 Voltage clamps
- 3 Current clamps
- Temperature sensors (optional)
- Speed sensor (optional)

ABB MACHsense-P Measurements

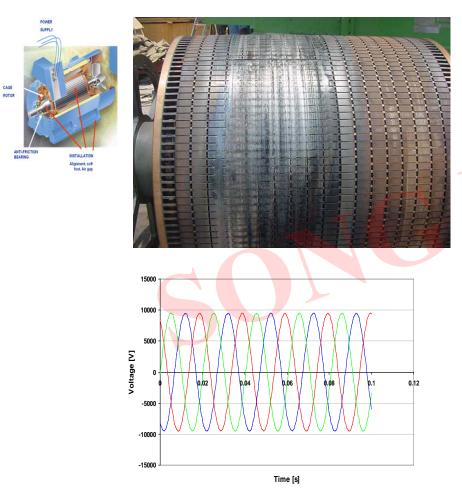


Measurement

- Either 4 vibrations channels or 7 electrical channels simultaneously
- High resolution data collector for quick & high speed data acquisition
- Critical comparisons to be made immediately during measurements (e.g. alignment check)

ABB MACHsense-P Standard Inspection Analysis

Cage Rotor


- Rotor winding defects
- Air gap eccentricity
- Unbalance
- Looseness
- Static and dynamic shaft bends
- Internal misalignment

Anti-Friction Bearing

- Bearing defects
- Bearing assembly defects
- Lubrication interval estimates

ABB MACHsense-P Standard Inspection Analysis

Installation

- Soft foot
- Misalignment
- Foundation resonance

Power Supply Quality

- Harmonics and distortion
- Unbalance
- Over/under voltage, frequency

ABB MACHsense-P Standard Inspections

Solution levels	Inspection	Deliverables	Measurements Requirement	When
• Standard	 Vibration, voltage, current, temperature (winding, cooler, ambient) and speed Operation history and maintenance and failures records 	 Cage rotor package rotor winding defects air gap eccentricity unbalance looseness static and dynamic shaft bends internal misalignment Anti-friction bearing package bearing defects bearing defects bearing assembly defect, lubrication interval estimates Installation soft foot misalignment foundation resonance Power supply harmonics and distortion unbalance over/under voltage frequency 	• Measurements of the machine at operating load	• Every six months

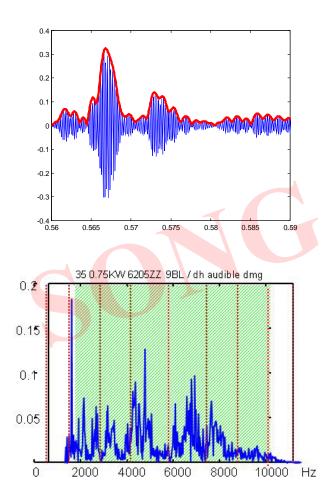
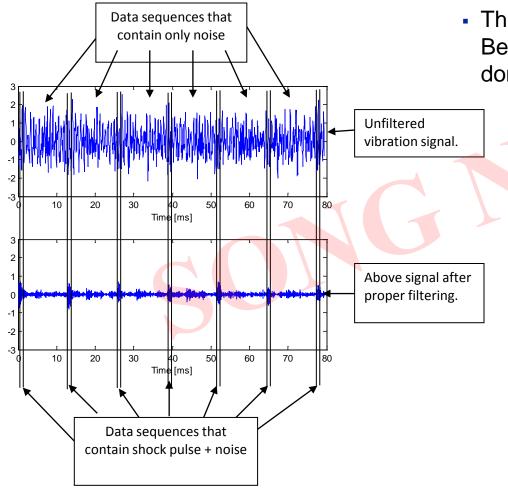
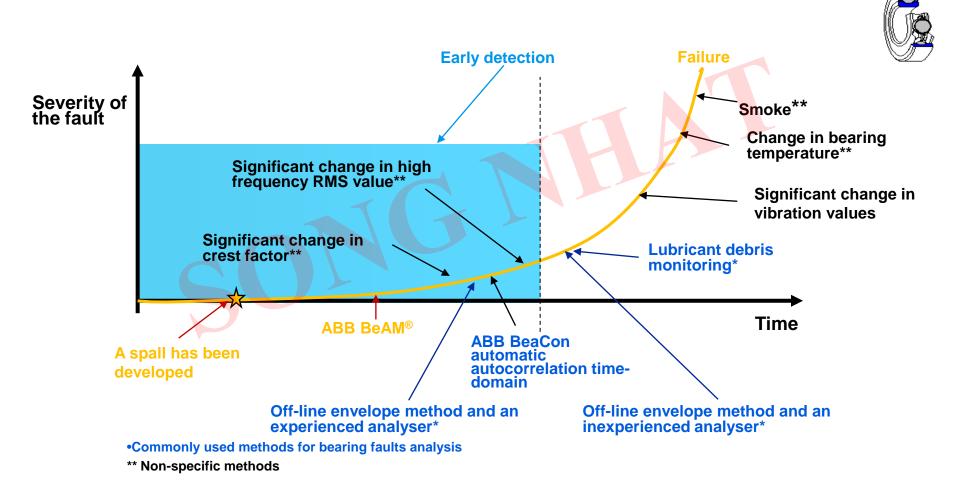


ABB MACHsense-P Advanced Inspections

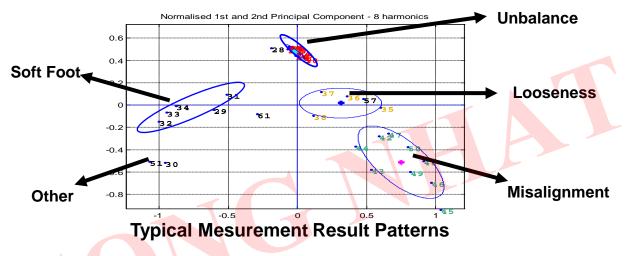
Solution levels	Inspection	Deliverables	Measurements Requirement	When
• Advanced	 Vibration, voltage, current, temperature (winding, cooler, ambient) and speed Operation history and maintenance and failures records 	 Same as Standard Cooler Fouling Root Cause Analysis 	• Measurements of the machine at operating load and multiple loads or/and start-up	• When defect is suspected either from standard measurement or from observed problems and there is a need for further investigation


Bearings Vibration Analysis : BeAM[®] Technical explanation

- Common analysis methods use for the envelope method for bearing fault detection
 - The envelop method uses the envelope of high frequency signals generated by defects and compares it to bearing defect frequencies.
- The ABB BeaCon automatic analysis uses:
 - the auto-correlation time-domain method to filter out the noisy signals more effectively that traditional method

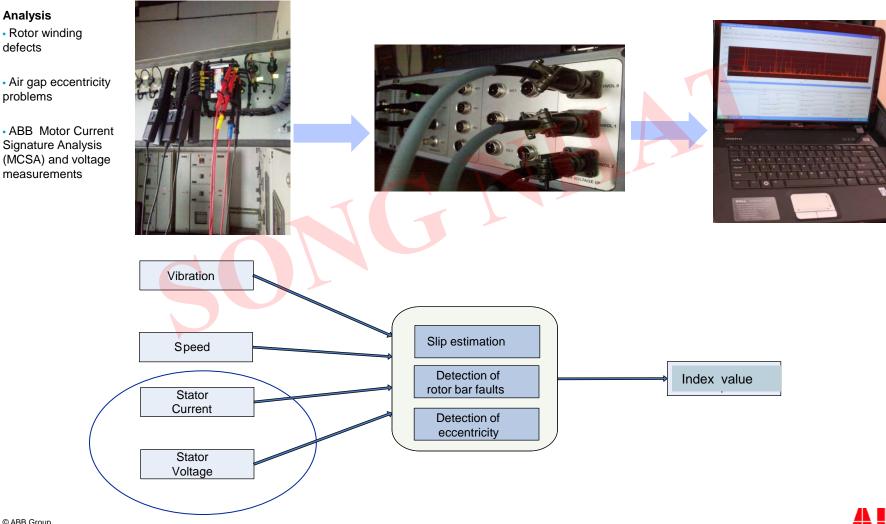

Bearings Vibration Analysis : BeAM[®] Technical explanation

- The ABB BeAM[®] in addition to the ABB BeaCon automatic autocorrelation timedomain analysis:
 - Perform early shock pulse detector analysis which only extract the shock pulses related to bearing defects using special signal processing methods such as adaptive filtering and likelihood ratios to improve the signal sensitivity.
 - Estimates the following parameters to evaluate the condition of the bearing:
 - Kurtosis, high frequency RMS, maximum energy per shock pulse & integrated energy calculations



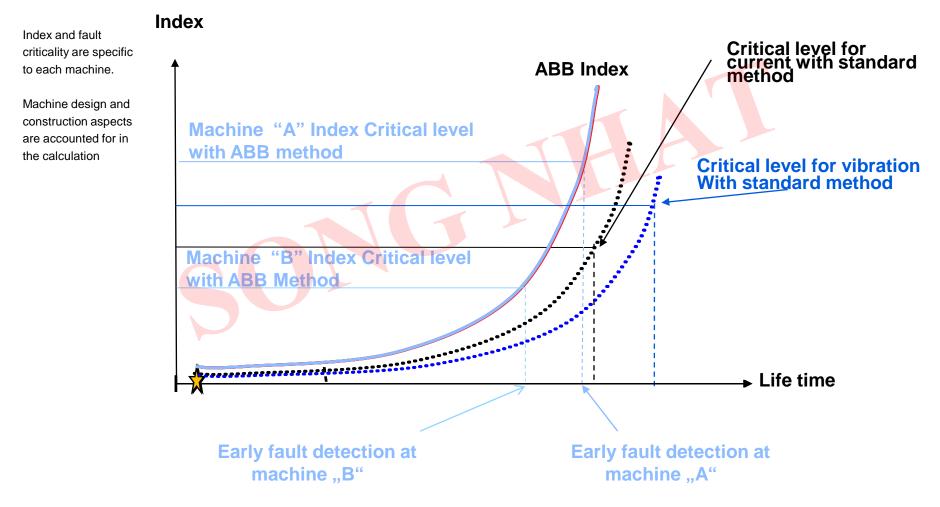
Sensitivity of different methods to detect bearing faults

Analysis of other vibration causes

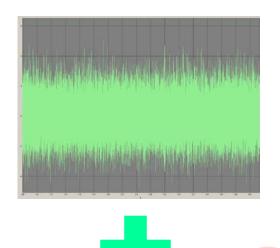


Analysis

 Automatic analysis for the identification of misalignment, unbalanced, looseness and soft foot using Principal component Analysis (PCA)



Electrical measurements


© ABB Group November 24, 2011 | Slide 15

Advantage of ABB MACHsense-P Technology

ABB MACHsense-P Advantages

Rotor analysis

- Simultaneous presence of different defects can be isolated and analyzed separately
- Even if machine is loaded below 50%, rotor bar defect detection is possible
- Double cage or deep bar defects at the slot top can be easily identified
- Early detection of defects

ABB MACHsense-P Advantages

ABB Motor Current Signature Analysis (MCSA)

- Our diagnostic method reduces the effect of
 - torque oscillations, variations and dips caused by power supply and loads
 - Winding connections
 - Rotor construction
- Our diagnostic method is suitable for large machines and takes into account
 - Low slip
 - Larger air gaps

Advantages of ABB MACHsense-P vs. other methods

Model Based Analysis

- Increases reliability of defect identification
- Quantifies defect severity

Combined Analysis of current, vibrations, and torque

- Improves diagnosis accuracy
- Takes into account machine design & construction aspects to estimate defect indices & defect criticality

Advantages of ABB MACHsense-P vs. other methods

warneters	Alama		AlWaterCooker	Autocoan	Beatro	P-41-1-	ElecQuarities	******	Nameplate	PCA	PowerQuality	THD	Vierna	1
#-arrener1	Aanu	Picer Diagram	AIW MELOCHE	Plantocari	Bearg	Latywanega	Electionation	Lubecation	PLarveptane.	PLA.	Powergually	IND	yarna	
0.25 0.20 0.15 0.10 0.05														
00		10		:	2000		3000 Hz		4000		5000		6000	2
0 0 Spectrum V	Vibration @1/25	10 12010 0 19 01 40 12010 9 56 40 41	и		2000				4000	2201	5000 Optional		6000	2
0 0 Spectum V Star 2010	Vibration @1/25	1/2010 8 19 41 A 9/2010 9 56 40 A 9/201	M	uired			Hz	6cE(1[3]	4000			[28	6000	2
0 0 Spectrum V Starr 2010	Vibration @1/25 np 342401 10.2016 240.000 114.2	2010 9 19 40 4 2010 9 56 40 4 1 500	M				Hz Output VibrationSta		4000	î	Optional RotceBare		6000	0
0 0 Spectrum V Spectrum V Staar 2010 2010 2010	Vibration @1/25	2010 919 61 4 4 2010 956 40 4 1570 1702 2363	M M Sight	uired	ιH		Hz		4000	î	Optional	[28 [300	6000	0
0 0 Spectrum V Spectrum V Staar 2010 2010 2010	Vibration @1/25 mp 540241 10.2010 540 2010 10.2015	2010 919 61 4 4 2010 956 40 4 1570 1702 2363	M M Slot	ured Inimum [0.07	1H 6H		Hz Output VisationSu VisationDy VisationRe	vani [1 [3] keni [0.9 [3]	4000	_1	Optional RotceBare	300	6000	0
0 0 Spectrum V Spectrum V Staar 2010 2010 2010	Vibration @1/25 mp 540241 10.2010 540 2010 10.2015	2010 919 61 4 4 2010 956 40 4 1570 1702 2363	M Sight Sight	ured Irimum (0.07 Irinmum (0.08	1H 6H		Hz Output VExationOy	vani [1 [3] keni [0.9 [3]	4000		Optional RotorBan NominaMakage	300	600	0
0 0 Spectrum V Spectrum V Staar 2010 2010 2010	Vibration @1/25 mp 540241 10.2010 540 2010 10.2015	2010 919 61 4 4 2010 956 40 4 1570 1702 2363	M Sight Sight	uend Inimum (0.0 Inimum (0.0 Bahlan (20) Bahlan (40)	1H 6H		Hz Output VibrationSt VibrationSt VibrationSt StaticEceFit	vani [1 [3] keni [0.9 [3]			Optional RotoiBasu NominaMoltage NominaRotorSpec	300	6000	

- Unique motor specific analysis tool
- Comprehensive analysis
- Current, voltage and vibration in a single automated analysis
- Summary status report issued on site
- Application specific preventive maintenance plan with final detailed report
- Reduction in unplanned downtime
- Early warning provides adequate time for maintenance plan
- ABB service network available
- Improves accuracy of diagnosis

ABB Condition Monitoring Case study - Bearings

- Vibration measurement were taken for two identical Boiler Feed Pump motors. Both measurements were taken for 50 % of machine load.
- Nameplate details:

Power	Voltage	Current	Speed	Frequency	Poles
2000 kW	6.6 kV	204 A	1487 rpm	50 Hz	4

- Overall vibration readings in Motor BFP 3C, serial number: 3991201-1
- Velocity: 1.02 mm/s
- Acceleration: 0.46 g
- Overall vibration readings in motor BFP 3B, Serial Number: 3991201-2
- Velocity: 1.3 mm/s
- Acceleration: 1.36 g

ABB condition monitoring Case studies – Bearings: Early Warning

BEARINGS STATUS:

Crest factor	High frequency RMS	Kurtosis	Modified crest factor	Peak to peak
5.43	0.459	3.32	2.32	4.99

Likelihood ratio energy analysis (BeAM): 19.26

Time domain analysis ((Beacon): 0.07424
------------------------	-------------------

BEARINGS S	TATUS:			
Crest factor	High frequency RMS	Kurtosis	Modified crest factor	Peak to peak
5.06	1.36	3.33	2.67	13.8

Likelihood ratio energy analysis (BeAM): 281.7

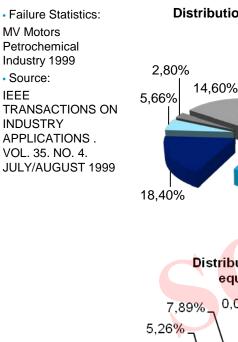
Time domain analysis (Beacon): 1.837

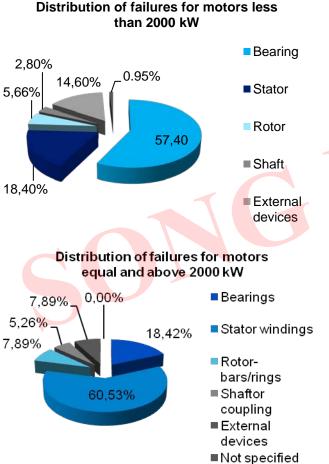
Machine BFP 3C

- Bearing OK
- Suggested action:
 - action category: preferred
 - next measurement: in six months

Machine BFP 3B

- Bearing faulty
- Suggested action:
 - action category: mandatory
 - change bearing as soon as possible but not later than 3 months


ABB condition monitoring Case study : Recommendations Explanation of Terminology


Action Category

	Probability of Fault Occurrence - Time Scale	Service Schedule	Measurement Frequency
No action			Measurements should be repeated between 6 months to a year
PREFERRED Action		Schedule service based on changing fault severity over time.	Measurements should be repeated every 6 months
CRITICAL Action		Scheduled service at next available outage.	The machine should be secured or monitored very closely*
MANDATORY Action	likely failure within days to weeks.	Perform service as soon as possible.	The machine should be secured or monitored very closely*
			* special short term monitoring schedule

Target machines with ABB MACHsense-P

- for machines less than 2000 kW anti-friction bearings are main failure reason
 - -> ABB MACHsense-P

- for machines above 2000 kW sleeve bearings are often used which are less likely to fail.
- main failure reason is stator winding.
 - -> ABB LEAP for stator

Power and productivity for a better world™